--- title: "Covariates" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Covariates} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, results='hide', echo=F, message=F, warning=F} library(campsis) ``` ### Add a body weight covariate into the model Let's use a simple 1-compartment model to illustrate how covariates are managed by CAMPSIS. ```{r} model <- model_suite$nonmem$advan1_trans2 ``` For this example, we're going to add allometric scaling on the clearance parameter. ```{r} model <- model %>% replace(Equation("CL", "THETA_CL*exp(ETA_CL)*pow(BW/70, 0.75)")) model ``` We will infuse 1000 mg with a rate of 200 mg/hour into the central compartment and observe for a day. The corresponding dataset is as follows: ```{r} dataset <- Dataset() %>% add(Infusion(time=0, amount=1000, rate=200)) %>% add(Observations(times=seq(0,24,by=0.5))) ``` To visualize clearly the effect of the covariates, we will disable the inter-individual variability on the model. ```{r} model <- model %>% disable("IIV") ``` ### Constant body weight Let's define a constant covariate into the dataset. This is done as follows. ```{r} ds <- dataset %>% setSubjects(5) %>% add(Covariate("BW", 70)) ``` All simulated subjects will be exactly the same, as IIV was removed. ```{r covariates_constant_bw , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds) spaghettiPlot(results, "CONC") ``` ### Fix body weight values (1/subject) Let's now define 1 body weight per subject. This is done as follows. ```{r} ds <- dataset %>% setSubjects(5) %>% add(Covariate("BW", c(50,60,70,80,90))) ``` Simulated subjects should now be different. ```{r covariates_fixed_bw , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds) spaghettiPlot(results, "CONC") ``` ### Uniform distribution Let's say now that the body weight is a uniform distribution. This can be implemented as follows: ```{r} ds <- dataset %>% setSubjects(40) %>% add(Covariate("BW", UniformDistribution(min=50, max=90))) ``` Simulated weights will then be sampled from a uniform distribution with a min value of 50 and a max value of 90. ```{r covariates_uniform_distribution , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds, outvars=c("CONC", "BW"), seed=1) gridExtra::grid.arrange(spaghettiPlot(results, "BW"), spaghettiPlot(results, "CONC"), nrow=1) ``` ### Normal distribution Let's say now that the body weight is a normal distribution. This can be implemented as follows: ```{r} ds <- dataset %>% setSubjects(40) %>% add(Covariate("BW", NormalDistribution(mean=70, sd=10))) ``` Simulated weights will then be sampled from a normal distribution with a mean of 70 and a standard deviation of 10. ```{r covariates_normal_distribution , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds, outvars=c("CONC", "BW"), seed=1) gridExtra::grid.arrange(spaghettiPlot(results, "BW"), spaghettiPlot(results, "CONC"), nrow=1) ``` ### Log-normal distribution Say now that the body weight is a log-normal distribution. This can be implemented as follows: ```{r} ds <- dataset %>% setSubjects(40) %>% add(Covariate("BW", LogNormalDistribution(meanlog=log(70), sdlog=0.2))) ``` Simulated weights will then be sampled from a log-normal distribution with a median of 70 and a coefficient of variation of 20%. ```{r covariates_lognormal_distribution , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds, outvars=c("CONC", "BW"), seed=1) gridExtra::grid.arrange(spaghettiPlot(results, "BW"), spaghettiPlot(results, "CONC"), nrow=1) ``` ### Bootstrap Body weight can also be bootstrapped from a real dataset. Let's create a fictive one: ```{r} bootstrap <- data.frame(ID=c(1,2,3,4,5), BW=c(89,54,60,75,77)) ``` ```{r} ds <- dataset %>% setSubjects(10) %>% add(Covariate("BW", BootstrapDistribution(data=bootstrap$BW, replacement=TRUE, random=TRUE))) ``` Simulated weights will then be sampled from a log-normal distribution with a median of 70 and a coefficient of variation of 20%. ```{r covariates_bootstrap , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds, outvars=c("CONC", "BW"), seed=2) gridExtra::grid.arrange(spaghettiPlot(results, "BW"), spaghettiPlot(results, "CONC"), nrow=1) ```