--- title: "Infusions" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Infusions} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, results='hide', echo=F, message=F, warning=F} library(campsis) ``` There are 2 ways to implement infusions in CAMPSIS: * in the model: infusion duration or rate is defined for each compartment * in the dataset: infusion duration or rate is defined for infusion In the first case, the simulation engine will take care of the infusion duration or rate (RATE in dataset will be -1 or -2). In the second case, CAMPSIS will inject specific values in the RATE column of the dataset. ### Infusion duration or rate implemented in model Let's use a 2-compartment model without absorption compartment to illustrate how this can be achieved. ```{r} model <- model_suite$nonmem$advan3_trans4 ``` For this example, we're going to define a lag time `D1` for this absorption compartment. First let's create a new parameter `D1`, log-normally distributed with a median of 5 hours and 20% CV. ```{r} model <- model %>% add(Theta(name="D1", value=5)) model <- model %>% add(Omega(name="D1", value=20, type="cv%")) ``` Now, let's add an equation to the drug model to define `D1`. ```{r} model <- model %>% add(Equation("D1", "THETA_D1*exp(ETA_D1)")) ``` Finally, we need to tell CAMPSIS that `D1` corresponds the infusion duration for the first compartment. ```{r} model <- model %>% add(InfusionDuration(compartment=1, rhs="D1")) ``` Our persisted drug model would look like this: ```{r} model ``` Now, let's infuse 1000 mg and run the simulation. ```{r} ds1 <- Dataset(50) %>% add(Infusion(time=0, amount=1000)) %>% add(Observations(times=seq(0,24,by=0.5))) ``` ```{r infusion_model , fig.align='center', fig.height=4, fig.width=8, message=F} results_d1 <- model %>% simulate(dataset=ds1, seed=1) shadedPlot(results_d1, "CONC") ``` ### Infusion duration or rate implemented in dataset The same simulation can be performed by defining the infusion duration in the dataset. For this, we need to sample `D1` values. This can be done as follows: ```{r, results='hide', echo=F, message=F, warning=F} set.seed(1) ``` ```{r} distribution <- ParameterDistribution(model=model, theta="D1", omega="D1") d1Values <- (distribution %>% sample(as.integer(50)))@sampled_values ``` Then, we can inject them into the dataset. ```{r} ds2 <- Dataset(50) %>% add(Infusion(time=0, amount=1000, duration=d1Values)) %>% add(Observations(times=seq(0,24,by=0.5))) ``` Here is an overview of the dataset in its table form if we filter on the doses: ```{r} ds2 %>% export(dest="RxODE") %>% dosingOnly() %>% head() ``` Let's now simulate this dataset using the original model. ```{r infusion_dataset , fig.align='center', fig.height=4, fig.width=8, message=F} results_d1 <- model_suite$nonmem$advan4_trans4 %>% simulate(dataset=ds2, seed=1) shadedPlot(results_d1, "CONC") ```